CFD Simulation of a 3-Bladed Horizontal Axis Tidal Stream Turbine using RANS and LES

Modelling and Simulation Centre, School of MACE, The University of Manchester

Oxford Tidal Energy Workshop
Oxford, UK.
29 - 30 March 2012
Overview

1. Introduction
2. Methodology
3. RANS Results
4. RANS and LES comparison
5. Conclusions & Further work
Introduction

ReDAPT (Reliable Data Acquisition Platform for Tidal):

- Project designed to accelerate the tidal energy industry.
- Aim to inspire market confidence in tidal stream turbines (TST).
- Deployment of a full scale 1MW turbine at EMEC in the Orkneys.

This work:

- Using *Code_Saturne* to accurately predict loading on tidal turbines.
- Assess the influence of turbulence and waves on TSTs.
- Current results compare Reynolds Averaged Navier Stokes (RANS) model and Large Eddy Simulation (LES) against those for a laboratory scale turbine.
Introduction
Case overview

- 0.4 m radius, R, turbine pulled through a towing tank.
- Parametric study of force coefficients against tip-speed-ratio (TSR).

Photo reproduced from Bahaj et al. (2005).
EDF’s open-source CFD code, \textit{Code_Saturne} (Archambeau et al., 2004), is used to simulate turbulent flow past a TST.

A sliding mesh method is developed in \textit{Code_Saturne} to allow for the TST rotation.

Second order in space (central differencing).

First-order in time with $\Delta t \approx 1.5^\circ$ of rotation per time-step.

The $k - \omega$ SST RANS turbulence model is used to simulate the flow.

Results are also compared against an LES that is also been performed as part of this project.
Methodology

Sliding-mesh method

- Start in cell centre, I, with face-centre, F.
- I is projected through F to give a halo point, H.
- Search for, J, the nearest cell-centre to the halo-point.
- The face-centre value is given a Dirichlet condition with the value:

\[
\phi_F = \frac{1}{2}(\phi_I + \phi_H),
\]

Where:

\[
\phi_H = \phi_J + \left. \frac{\partial \phi}{\partial x} \right|_J (JH).
\]
Methodology

Meshing strategy

- Geometry built in two parts, inner turbine and outer domain.
- Block-structured approach with hanging nodes to control cell-count.
- \(\approx 2 \text{ million cells with } 15 < y^+ < 200 \) at the walls.
- LES mesh is wall refined with \(\approx 7.7 \text{ million cells.} \)
RANS Results
Flow-field

- Pressure iso-surfaces coloured by velocity are shown for the instantaneous flow-field for TSR = 6.
- Tip effects are clearly visible in the near wake whilst the mast creates main structures further down-stream.
Instantaneous velocity on centre-plane shows tip-effects and influence of mast on flow.
RANS Results

Force coefficients

- Effect of blades passing the mast is clear from instantaneous force coefficients.
- Power Spectral Density (PSD) analysis of the C_P shows peaks at 3 and 6 times the blade rotation frequency (f).
RANS Results

Force coefficients

- $k - \omega$ SST predicts force curve against TSR although under predicted by approximately 10%.
- LES shows gain in precision matching experiments within 3% except for the lower values of TSR.
RANS and LES comparison

Flow structures

- Iso-Q $0.5 (\Omega_{ij} \Omega_{ij} - S_{ij} S_{ij})$ surfaces coloured by vorticity are shown for RANS and LES.
- LES maintains the tip vortices and captures structures in the wake better than RANS.
RANS and LES comparison
Pressure coefficients on the blades

- Mean pressure coefficients are shown on the blades at quarter length locations.
- Both RANS and LES predict similar behaviour although LES captures larger forces on pressure and suction surfaces.

\(k - \omega \) SST

LES
Conclusions & Further work

Conclusions:

- Sliding-mesh method successfully implemented in *Code_Saturne* to simulate a rotating TST.
- Flow features are captured well by RANS and LES.
- RANS under predicts the force coefficients whilst LES is far more accurate.
- Difference in calculations is near wall modelling and higher order time-scheme used by *Code_Saturne* for LES.

Further work:

- Wall refined RANS simulation to compare with experiments.
- Assess influence of waves on full scale MCT comparing with data from EMEC.
Acknowledgements

This research was performed as part of the Reliable Data Acquisition Platform for Tidal (ReDAPT) project commissioned and funded by the Energy Technologies Institute (ETI). The authors are highly grateful to EDF for additional funding and access to its High Performance Computing (HPC) facilities.

Sliding-mesh method

Implementation: *Code_Saturne* Subroutines

- **Black** - Unchanged.
- **Red** - Modified.
- **Blue** - New.

- `findha` - Search for closest cell-centre to halo-point.
- `upcoef` - Updates Dirichlet values on interface.
Sliding-mesh method
Implementation: Pressure-Velocity Loop

- *Code_Saturne’s* existing pressure-velocity loop is enabled by setting NTERUP > 1.
- Loop used to ensure continuity over the interface.
- Modification to include the RANS subroutines.

```
tridim
  ↓
phyvar
  ↓
usclim
  ↓
navsto
  ↓
turb**
  ↓
phyvar
  → P-V Loop
```

References
RANS and LES comparison

Comparison of numerical set-up

<table>
<thead>
<tr>
<th></th>
<th>RANS ($k-\omega$ SST)</th>
<th>LES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-scheme</td>
<td>1st order</td>
<td>2nd order</td>
</tr>
<tr>
<td>Rotation per time-step</td>
<td>1.5°</td>
<td>0.05°</td>
</tr>
<tr>
<td>Space discretization</td>
<td>Centred</td>
<td>Centred</td>
</tr>
<tr>
<td>Wall modelling</td>
<td>Wall-functions</td>
<td>Wall refined</td>
</tr>
<tr>
<td>Mesh size</td>
<td>2.2 million</td>
<td>7.6 million</td>
</tr>
</tbody>
</table>