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Abstract

Bonded networks of metal fibres are highly porous, permeable materials, which often exhibit relatively high strength. Material of
this type has been produced, using melt-extracted ferritic stainless steel fibres, and characterised in terms of fibre volume fraction,
fibre segment (joint-to-joint) length and fibre orientation distribution. Young�s moduli and yield stresses have been measured. The
behaviour when subjected to a magnetic field has also been investigated. This causes macroscopic straining, as the individual fibres
become magnetised and tend to align with the applied field. The modeling approach of Markaki and Clyne, recently developed for
prediction of the mechanical and magneto-mechanical properties of such materials, is briefly summarised and comparisons are made
with experimental data. The effects of filling the inter-fibre void with compliant (polymeric) matrices have also been explored. In
general the modeling approach gives reliable predictions, particularly when the network architecture has been characterised using
X-ray tomography.
� 2005 Published by Elsevier Ltd.
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1. Introduction

There is current interest [1–9] in materials made by
bonding together slender metallic members, such as fi-
bres, wires, rods, ribbons etc. This can be done by weld-
ing, brazing, sintering or adhesive bonding. An
illustrative fibre architecture is shown in Fig. 1. Such net-
work materials usually incorporate high void contents
(�40–98%) and can exhibit interesting properties. Of
course, the mechanical efficiency of various strut assem-
blies, such as trusses, is well known, but translation of
such concepts into design of porous materials (or com-
posites) is still evolving. Furthermore, the high surface-
to-mass ratio of bonded fibre networks, coupled with
the relatively good environmental stability of metals,
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means that they can be attractive in terms of transport
phenomena characteristics, leading to applications
involving heat transfer, filtration, catalyst support,
acoustic damping etc. When the fibres are ferromagnetic,
there is potential for exercising control over fibre orienta-
tion distributions during processing via applied magnetic
fields and there is also scope for the magnetic induction
of mechanical strain in the material (see below).

A recently introduced idea [10,11], with potential for
the development of actuation applications, is based on
the way in which an assembly of ferromagnetic fibres
is expected to deform under the influence of an applied
magnetic field, as individual fibres tend to align with the
field. This effect is illustrated schematically in Fig. 2. It
has been suggested [10] that this effect could be utilised
to stimulate bone growth, since bone tissue growing into
such a porous array would be strained when a magnetic
field was applied, with potential physiological benefits.
An analytical model has been presented [10,11] for

mailto:twc10@cam.ac.uk


Fig. 1. Scanning electron micrograph of a bonded fibre network
material, made by brazing short ferritic stainless steel fibres.
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Fig. 2. Schematic representation of how a bonded network of
randomly oriented ferromagnetic fibres will deform in a magnetic field.
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prediction of the induced deformation, together with
experimental validation for single fibres and for small
4-fibre assemblies.

In the present paper, a brief overview is presented of
the mechanical and magneto-mechanical characteristics
of non-periodic ferromagnetic fibre networks, as a func-
tion of the fibre architecture, and the presence or absence
of a (relatively compliant) matrix in the interstitial space.
Some relevant information about material production,
testing procedures and model development is supplied
in earlier papers [10,11].
2. An analytical framework based on fibre bending

A simple analytical model has been developed by
Markaki and Clyne [10,11], based on the bending of
individual fibre segments (sections between joints). It is
assumed that the deflections and strains exhibited by
the network arise predominantly from this type of defor-
mation, which is expected to be acceptable provided the
segments are relatively slender.

2.1. Elastic mechanical loading

The loading situation is depicted schematically in
Fig. 3(a), focussing on the elastic deformation exhi-
bited by a single fibre segment, lying with its axis at
an angle h to the loading direction. When a uniaxial
stress is applied, a force W acts on it in the loading
direction, generating a bending moment. Application
of standard cantilever bending mechanics leads to
expressions for the axial and transverse deflections, as
a function of the applied stress r (assuming uniform
partitioning of the load to all fibres)

Dz ¼ 4rL3sin2h

3EffD
2

; ð1Þ

Dr ¼ 4rL3 sin h cos h

3EffD
2

. ð2Þ

The macroscopic deflection in the loading direction,
and hence the overall strain, can be obtained by
summing the contributions from the deflections of
individual fibres. Doing this in a rigorous manner is
clearly complex, since the deflections exhibited by indi-
vidual fibre segments will be influenced by the config-
uration of neighbouring segments. However, if these
interactions are neglected, then the net strain can be
obtained by simple integration. If the fibre orientation
distribution is isotropic, so that it exhibits a sinh prob-
ability about any given axis, then the axial strain is
given by
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so the Young�s modulus of the network is given by

Ea ¼
9Eff

32 L
D

� �2 . ð5Þ

The form of this prediction may be compared with
that given by Gibson and Ashby [12] for a similar type
of material. This is also based on beam deflections (3-
point bending under a normal load, rather than the con-
nected pair of inclined cantilevers assumed in the present
model), but the geometry is more constrained. Assuming
simply supported cylindrical beams lying parallel or



Fig. 3. Schematic representations of (a) deflection of a fibre segment within a network, under the influence of an applied force, W, (b) generation of
strain within a surrounding environment and (c) deflection of a (ferromagnetic) fibre under the influence of a magnetic field.
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normal to the applied load, the Young�s modulus pre-
dicted by the Gibson and Ashby model can be expressed
in terms of L and D as follows:

Ea ¼
3pEf

4 L
D

� �4 . ð6Þ

Similarly, the transverse strain is given by

er ¼
DR
R

¼
R p=2
0

Dr sin hdhR p=2
0

r sin hdh

¼ 8r
3Eff
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The Poisson ratio, m (=er/ez) is thus predicted to have a
constant value of 1/p(�0.32), independent of the fibre
volume fraction and fibre segment aspect ratio. Since
the material is isotropic, Ea and m together fully define
the elastic behaviour. Of course, if the actual distribu-
tions of h and L/D are known, then Eqs. (3) and (7)
can be (numerically) integrated using these functions –
see Section 5.

2.2. Onset of inelastic behaviour

The stresses within a cantilever beam are known, so it
is a simple matter to predict the applied load at which
the peak stress within the system will reach the yield
stress of the fibre material. The maximum local stress
will occur at the fibre surface, at the position along the
beam where the bending moment reaches a peak (i.e.,
adjacent to the joints)

rf;max ¼
D
2

M
I
¼ D

2

W sin hðL=2Þ
ðpD4=64Þ

. ð9Þ

On setting this stress equal to the fibre yield stress, rf,Y,
and substituting for W, an estimate can be obtained of
the applied stress for the onset of yielding.

ra;Y ¼ rf ;Y

f
8 L

D

� � . ð10Þ
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2.3. Effect of the presence of an environment (matrix)

The behaviour is modified when material is intro-
duced into the inter-fibre space. If this material has a
much lower stiffness than the fibre, then this modifica-
tion can readily be analysed, since the form of the
deflection–distance relationship along the length of
the fibre is then expected to be the same (assuming that
the matrix is elastically homogeneous and isotropic),
although the deflections will clearly be reduced. By
comparing deflections with and without a matrix, it
can be shown that the Young�s modulus Ec of a fibre
network surrounded by a medium with finite stiffness
(i.e., a composite) is given by

Ec ¼
9Eff

32 L
D

� �2
Q
; ð11Þ

where Q is a strain reduction factor, which is a function
of the environment/fibre stiffness ratio and the fibre seg-
ment aspect ratio. The Poisson ratio is predicted to be
unaffected by the presence of the matrix. It should be
borne in mind that the model is only expected to be valid
in cases where Ee � Ef and (L/D)>�3, where the sub-
script ‘‘e’’ represents the environment (or matrix).
2.4. Magnetic loading

A magnetic load is generated by the application of a
uniaxial magnetic field. This will always tend to generate
an axial tensile strain in the fibre network, as a conse-
quence of individual fibres becoming magnetised along
their length and hence tending to line up parallel to
the applied field see Figs. 2 and 3(c). Any effect on the
net field experienced by an individual fibre, arising from
the magnetisation of neighbouring fibres, is assumed to
be small. The torque (bending moment) acting on a
magnetic dipole lying in a magnetic field B generates
net deflections in a similar manner to an applied
mechanical load, leading to expressions for the deflec-
tions parallel and normal to the applied field, at a dis-
tance x along the length of the fibre
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where Ms is the saturation magnetisation. The broad
validity of these expressions has been confirmed experi-
mentally [10] by comparing measured and predicted
deflections for single pieces of wire and for small welded
assemblies.
The overall extension parallel to the applied field can
be expressed by considering the displacements of a set of
fibre mid-points (see Fig. 3(c))
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The concept of ‘‘magnetic stiffness’’ of a bonded fibre ar-
ray, Sa (=B/ez) may now be introduced. This represents
the applied field required to generate unit elastic strain,
in an analogous manner to the Young�s modulus repre-
senting the applied stress needed to generate unit elastic
strain.

Sa ¼
9Ef

16M s
L
D

� �2 . ð15Þ

The transverse contraction is similarly derived:
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3. Mechanical properties

3.1. Elastic constants

Predicted relative stiffnesses are shown in Fig. 4, as
a function of fibre segment aspect ratio, for the Gib-
son and Ashby model (Eq. (6)) and for the isotropic
fibre network model (Eq. (5)), with three fibre volume
fractions. Also shown are measured stiffness values for
free-standing bonded fibre arrays with different f and
L/D values. (These fibre segment aspect ratios for
the bonded fibre arrays were estimated from SEM
micrographs, such as the one shown in Fig. 1.) The
Gibson and Ashby model predicts a sharper fall in
stiffness with increasing L/D than the Markaki and
Clyne model. However, increases in L/D would often
be accompanied by reductions in fibre content, f,
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Fig. 4. Comparison between theory (Eq. (5)) and experiment for the
relative stiffness of fibre networks, with different fibre volume fractions.
Also shown are predictions from the Gibson and Ashby model for a
cubic array fibres (Eq. (6)), for which the fibre volume fraction is
related to the segment aspect ratio.
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making the effective plot for the Markaki and Clyne
model somewhat steeper than the individual curves.

3.2. Yielding behaviour

The stress at the onset of yielding, predicted by
Eq. (10), is plotted in Fig. 5 as a function of L/D ratio,
for networks with different fibre contents. Also included
on this plot are measured values, taken as stress levels at
the onset of the plateau regime in the stress–strain curve.
The yield strength of the fibre (rf,Y = 1000 MPa) was
obtained from single fibre testing [7]. It can be seen that
the experimental data are broadly consistent with
predictions from the model.
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Fig. 5. Predicted stress at the onset of inelastic behaviour of fibre
arrays, as a function of segment aspect ratio, for different fibre volume
fractions. Also shown are corresponding experimental data.
4. Magneto-mechanical characteristics

The response to the application of a magnetic field of
both free-standing fibre networks and those infiltrated
with rubber or resin is illustrated in Fig. 6. The plots
show relative length changes of the specimens, as a func-
tion of the applied magnetic field. The field was ramped
up and down, with a maximum value of about 1.2 Tesla.
Length changes approaching 0.2% were recorded for the
free-standing fibre array (Fig. 6(a)) and the array infil-
trated with rubber (Fig. 6(b)), whereas for the resin-
impregnated array (Fig. 6(b)), the straining was barely
detectable. The latter is unsurprising, since the strains
are reduced as the constraint imposed by the surround-
ing material increases. The rate of strain increase drops
at higher field strengths. This is probably a geometric ef-
fect, since the fibre deflections will approach saturation
at high fields and the predicted deflections refer only
to the low strain regime. Furthermore, it can also be
seen that there is some hysteresis, with the induced
length change not being entirely reversible on reducing
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Fig. 7. Visualisation of the architecture of a fibre network material,
obtained by computed X-ray micro-tomography.
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the applied field. This may be due to formation of fibre
entanglements, which persist after removal of the field.
This effect appears more pronounced for the rubber-
impregnated array, which may be attributable to creep
deformation of the rubber.

Comparison between measured and predicted
changes shows that, for the non-impregnated and the
rubber-impregnated arrays, the measured deflections
are larger than those predicted by the model. While close
agreement with experiment is not really expected here,
since in reality the deformation behaviour of a fibre net-
work is expected to be complex, it is important to note
that these predictions are very sensitive to the segment
aspect ratio. This is illustrated in Fig. 6, which shows
predicted shape changes as a function of the applied
magnetic field, for two segment aspect ratios. The value
of 6 used for the prediction was estimated from micro-
graphs such as those shown in Fig. 1. Predictions are
also shown for a segment aspect ratio of 10, since it is
possible that not all the fibres are bonded at their
cross-over points.
5. Characterisation of network architecture

It is clear that systematic quantitative study of fibre
network materials requires accurate and reliable char-
acterisation of their architecture. The analysis and pre-
dictions presented earlier are crude in this respect, with
isotropy being assumed and fibre segment lengths
being estimated visually from micrographs. In fact, it
is well known that such networks are rarely isotropic,
although, depending on the manufacturing technique,
they are often transversely isotropic. Such characterisa-
tion is now being undertaken, using the technique of
computed X-ray micro-tomography [13,14]. An illus-
trative example is given here. Full details are presented
elsewhere [15]. Standard software packages are now
available which create visualisations of the structure
from tomographic data. Fig. 7 shows such a visualisa-
tion, for a network material composed of 5 mm long
ferritic stainless steel (446) fibres, sintered for 5 h at
1200 �C, after being gently compressed (manually) in
the axial direction within a tube. The relative density
(fibre volume fraction) is about 10%. The fibres were
produced by a melt extraction process and have a
cross section with an equivalent diameter of about
60 micron. Most fibre sections are actually somewhat
flattened or crescent-shaped and this can be seen in
the visualisation.

A skeletonisation algorithm has been employed [15],
allowing fibre segments to be vectorised from tomogra-
phy data of this type, and this has allowed fibre orienta-
tion distributions to be obtained for these materials.
Fig. 8 shows the orientation distribution for the material
illustrated in Fig. 7. It can be seen that in this case there
is a marked tendency for the fibres to lie at relatively
large angles to the unique (pressing) direction. This is
readily explicable, although the strength of the effect is
expected to depend on the fibre length, and perhaps also
on fibre yielding and work-hardening characteristics, as
well as on the compression pressure.

It is now possible to predict the elastic constants of
this material, retaining the assumptions about uniform
partitioning of the load between individual fibres, and
neglect of local constraint geometries, but utilising the
actual distribution of fibre orientation in the integration
procedure. Since the skeletonisation algorithm allows
evaluation of fibre segment lengths, as well as orienta-
tions, it is possible for this distribution to be included
in the integration, and even for coupling between them
to be taken into account, but for present purposes it is
assumed that all fibre segments are of the (measured)
average length, which is about 540 micron, so that L/D
is about 9.

The integration required to give the predicted strain
can now be written
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where the segment orientation distribution, P(hi), is
given by

P ðhiÞ ¼
1

Dhi
� N hiPn

i N hi

; ð19Þ

where N hi is the number of fibres inclined at an angle hi
(i.e., within a bin of width of Dhi, centred at hi).



Fig. 8. Distribution of inclination angles for the structure visualised in Fig. 7, obtained from the tomography data after skeletonisation of the
network and vectorisation of the fibre segments.
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The axial Young�s modulus of the fibre array, Ea (=r/ez),
is therefore given by
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3Eff

8 L
D

� �2
Pn

i N hi cos hiPn
i N hisin
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Similarly, the transverse Young�s modulus is given by

Etr ¼
3Eff

8 L
D

� �2
Pn

i N hi cosðp2 � hiÞPn
i N hisin

2ðp
2
� hiÞ

ð22Þ
0.0001

0.001

0.01

0.1

0 5 10 15 20

Predicted (Through-Thickness) (f=10%)

Predicted (In-Plane) (f=10%)

Experimental (Through-Thickness)

Experimental (In-Plane)

 ,oitar sse nffits erbif / kro
wte

N
E / 

E
f

Fibre segment aspect ratio, L/D

Fig. 9. Predicted dependence of network stiffness on fibre segment
aspect ratio, in axial (through-thickness) and transverse (in-plane)
directions, based on the orientation distribution data shown in Fig. 8.
Also shown are measured stiffnesses in these two directions.
Fig. 9 shows a comparison between predictions
obtained using these two equations and experimentally
measured stiffness values for this material, plotted at
the L/D value estimated from the tomography data
(L/D = 9). While agreement is not perfect, there is a
good level of consistency, not only for the anisotropy
(ratio of stiffness in axial and transverse directions),
but also in terms of the absolute values. This suggests
that the rather crude assumptions made about load
partitioning and local constraint effects are not too
unrealistic, although these measurements relate only
to a single material and more comprehensive studies
are clearly required.
6. Conclusions

This paper presents an overview of recent develop-
ments concerning network materials composed of
bonded (ferromagnetic) metal fibres, with or without a
compliant (polymeric) matrix. A simple analytical
framework for prediction of mechanical and magneto-
mechanical properties, originated by Markaki and
Clyne, is briefly outlined here. The following detailed
points may be noted.

(1) Simple analytical models are described, based on
deformation being dominated by bending of indi-
vidual fibres. These models are applicable to cases
in which the fibre segments (between joints) are
relatively slender and any matrix present is much
more compliant than the fibre material. Net
dimensional changes are obtained via a simple
integration procedure, summing the deflections
which would be exhibited by individual fibres if
they were free-standing.
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(2) An expression has been derived for the Young�s
modulus, as a function of fibre segment aspect
ratio, L/D, and fibre volume fraction, f. The form
of this prediction is similar to that of a previously
developed expression (Gibson and Ashby model)
based on a regular, orthogonal set of fibres, except
that L/D and f can be independently specified in
the current model and the predicted dependence
on aspect ratio is rather less sharp.

(3) The effect of the presence of a (compliant) matrix
has been simulated via some crude assumptions
about how its presence will inhibit fibre bending.
This leads to an expression for a ‘‘strain reduction
factor’’, dependent on L/D and the matrix/fibre
stiffness ratio.

(4) The onset of plastic deformation has also beenmod-
elled, by comparing peak stresses within the fibres
with the nominal yield stress of the fibre material.

(5) Predictive equations are presented for the elastic
deformation inducedby the impositionof amagnetic
field. The concept of a ‘‘magnetic stiffness’’, S, is
introduced, analogous to a Young�s modulus, E, in
the sense that it is the applied magnetic field needed
to induce unit elastic strain, whereas E is the applied
stress needed to induceunit elastic strain.The expres-
sion for S incorporates the saturation magnetisation
of the fibre material, as well as the fibre Young�s
modulus and the fibre segment aspect ratio.

(6) Comparisons between theory and experiment are
presented for Young�s modulus, yield stress and
magnetic stiffness, based on the assumption of an
isotropic fibre orientation distribution. Fairly
good agreement is observed, but in practice many
network materials are likely to exhibit pronounced
anisotropy and in such cases quantification of the
fibre architecture is essential for reliable modelling.
This quantification is best done using computed
X-ray tomography and a preliminary comparison
is presented between measured (axial and trans-
verse) stiffness and predictions based on a fibre
orientation distribution obtained in this way. This
comparison is encouraging and suggests that the
proposed modeling approach, in conjunction with
tomography studies, should prove a useful tool for
further development of fibre network materials.
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