Large elastic recovery in zinc dicyanoaurate Supplementary Information

Chloe S. Coates,¹ Matthew R. Ryder,² Joshua A. Hill,¹ Jin-Chong Tan,² and Andrew L. Goodwin^{1*}

16th February 2017

¹Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K. ²Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K. *Electronic address: andrew.goodwin@chem.ox.ac.uk

Contents

S 1	Analysis of nanoindentation data	3
S2	Elasticity from tensorial analysis	5
S 3	References	9

S1 Analysis of nanoindentation data

Figure S1: Load-displacement (P-h) data obtained from nanoindentation onto the (001) and (100) facets of $Zn(Au(CN)_2]_2$ single crystals, corresponding to 18 and 17 individual measurements respectively. The maximum surface penetration depth used was 2000 nm.

	$E_{100} = E_{010}$	E_{001}	
Poisson's ratio, ν	GPa	GPa	
	Avg. 17 indents	Avg. 18 indents	
0 (upper bound)	15.2(3)	22.3(6)	
0.2	14.5(3)	21.4(5)	
0.44	12.2(2)	18.0(4)	
0.5 (lower bound)	11.4(2)	16.7(4)	

 Table S1: Calculated indentation moduli using a range of values for the Poisson's ratio, from CSM measurements

 between 200–1900 nm.

Sample preparation

The lattice parameters and symmetry of the selected crystal were confirmed and faces indexed *via* single crystal X-ray diffraction[S1]. All synthesised crystals shared a uniform bicapped hexagonal prism morphology where the faces of the prism (100):(010):(110) were equivalent. A suitable crystal was then mounted in a polyacrylate adhesive and polished using increasingly fine silicon carbide paper with water as the lubricant to ensure a smooth surface for nanoindentation, shown in Fig. S2(a).

Figure S2: (a) Polished surface of the (100) crystal facet of $Zn(Au(CN)_2]_2$ before testing. (b) Residual indents after indentation experiments to a maximum depth of 2000 nm.

S2 Elasticity from tensorial analysis

Result	a	Error vs. Expt. c		Error vs. Expt.
Experimental (CIF)	8.4160		20.8316	
B3LYP	8.78828	3.235%	20.41062	-2.021%
PBE	8.48797	0.855%	20.72554	-0.509%

Table S2: Geometry of $Zn[Au(CN)_2]_2$.

The elastic stiffness coefficients, C_{ij} (GPa) obtained from *ab initio* calculations are given below, as calculated using the PBE functional and B3LYP functional respectively.

	(44.832)	36.778	64.149	0	0	0)	
	36.778	44.831	64.149	0	0	0	
C = -	64.149	64.149	112.45	0	0	0	(5
$C_{ij} =$	0	0	0	11.029	0 0	(5	
	0	0	0	0	11.029	0	
	0	0	0	0	0	4.026	
	46.145	37.672	61.981	0	0	0	
	37.672	46.145	61.981	0	0	0	
<i>C</i> –	61.981	61.981	101.899	0	0	0	(5
$C_{ij} =$	0	0	0	10.931	0	0	(5
	0	0	0	0	10.931	0	
	0	0	0	0	0	4.236/	

Elastic property	PBE	B3LYP	Expt. (298 K)
K_a (TPa ⁻¹)	51.02	46.55	55(16)
$K_c \mathrm{TPa}^{-1})$	-49.32	-46.81	-48(14)
B (GPa)	18.97	21.62	16.7(16)
E ₁₀₀ (GPa)	8.23	8.44	16.8(3)
E_{001} (GPa)	11.60	10.23	22.1(4)
E_{\max} (GPa)	25.33	24.77	
E_{\min} (GPa)	8.23	8.45	
G_{\max} (GPa)	11.03	10.93	
G_{\min} (GPa)	2.91	2.77	
$ u_{ m max}$	1.10	1.07	
$ u_{ m min}$	0.02	0.00	

Table S3: Elastic properties of $Zn[Au(CN)_2]_2$ as calculated using elastic compliances (given below) from DFT in ElAM[S2]. Note: The calculations have not been corrected for dispersion interactions, as the semi-empirical correction resulted in over binding of the structure in both cell parameters and as a result deviated from experiment by > 15%.

Figure S3: 3-D Young's modulus representation surface $E(\theta, \psi)$ of $Zn[Au(CN)_2]_2$ in GPa.

Figure S4: 3-D linear compressibility representation surface $\beta(\theta, \psi)$ of Zn[Au(CN)₂]₂. Green and red represent the positive and negative values in TPa⁻¹.

Figure S5: 3-D shear modulus representation surface $G(\theta, \psi, \chi)$ of Zn[Au(CN)₂]₂. Blue and green represent the maximum and minimum moduli in GPa.

Figure S6: 3-D Poisson's ratio representation surface $\nu(\theta, \psi, \chi)$ of Zn[Au(CN)₂]₂. Blue and green represent the maximum and minimum values.

S3 References

- [S1] CrysAlisPRO, Oxford Diffraction/Agilent Technologies UK Ltd., Yarnton, England (2014)
- [S2] A. Marmier, Z. A. D. Lethbridge, R. I. Walton, C. W. Smith, S. C. Parker and K. E. Evans, *Comput. Phys. Commun.*, 181, 2102 (2010)