Thermal Amorphization of Zeolitic Imidazolate Frameworks**

Thomas D. Bennett, David A. Keen, Jin-Chong Tan, Emma R. Barney, Andrew L. Goodwin, and Anthony K. Cheetham*

anie_201007303_sm_m miscellaneous_information.pdf
Supporting Information

SI-1: Thermogravimetric Analysis
SI-2: Differential Scanning Calorimetry
SI-3: Variable Temperature Powder X-ray Diffraction

[*] T.D. Bennett, Dr J.C. Tan, Prof. A. K. Cheetham
Department of Materials Science and Metallurgy
University of Cambridge
Cambridge CB2 3QZ (UK)
Fax: (+44)1223334567
E-mail: akc30@cam.ac.uk

Prof. D. A. Keen, Dr E. R. Barney
ISIS Facility, Rutherford Appleton Laboratory,
Harwell Oxford
Didcot OX11 0QX (UK)

Dr A. L. Goodwin
Department of Chemistry, University of Oxford
Oxford OX1 3QR (UK)

[**] We thank T. Abraham, P. Beldon and Dr T. Friscic (University of Cambridge) for contributions, and the EPSRC and the ERC for funding to T.D.B., A.L.G. and A.K.C.

Supporting information for this article is available on the
WWW under http://www.angewandte.org
SI-1: Thermogravimetric Analysis

Thermogravimetric analysis (TGA) was performed using a TA instruments Q-500 series thermal gravimetric analyzer, with the sample (~20 mg) held on a platinum pan under a continuous flow of dry N₂ gas. The TGA curves were obtained using a heating rate of 10 °C min⁻¹. The TGA curves for ZIFs 8 and 11 have already been reported in the literature. [3]
SI-2: Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) was performed using a TA instruments Q-2000 series differential scanning calorimeter, with the sample (~7 mg) held on an aluminium pan under a continuous flow of dry He gas. The DSC data was obtained using a heating rate of 5 °C min⁻¹.
The PXRD traces of the as synthesized ZIFs (blue), are shown superimposed on those of the ZIFs after heating (red). It is clear that ZIF-9 is in the advance stages of decomposition, whilst excessive peak broadening due to desolvation is seen in the case of ZIF-11.
ZIF-βQtz