Large Fluctuations in the Algebraic Connectivity of Gaussian Random Geometric Graphs

Matthew Garrod

EPSRC Centre for Doctoral Training in the Mathematics of Planet Earth

Imperial College London

Supervisor: Nick Jones

September 11, 2017
Motivation
- Random Geometric Graphs
- When is Knowing Node Locations Useful?
- The Algebraic Connectivity

Large Fluctuations in the Algebraic Connectivity

Why? - Correlations between the Algebraic Connectivity and Other Network Properties
Random Geometric Graphs

We construct a **random geometric graph** (RGG) as follows:

1. Draw a vector of random positions $\mathbf{X} = (X_1, X_2, \ldots, X_N)$ from some distribution $P(\mathbf{X})$.
2. Connect nodes i and j if their Euclidean distance is less than R i.e. $|X_i - X_j| < R$.

![Diagram of a random geometric graph]

Matthew Garrod
Large Fluctuations in the Algebraic Connectivity of Gaussian Random Geometric
Random Geometric Graphs

(a) Uniform distribution in $[0, 1]^2$

(b) 2D Gaussian distribution in \mathbb{R}^2

Figure: Examples of RGGs with different node distributions.
Random Geometric Graphs

Node Locations need not represent positions in physical space. They may represent any continuous (or perhaps discrete) node attributes. e.g. in social networks they might represent the ‘social coordinates’ of individuals. Different dimensions might represent characteristics such as age, income, social background etc..

Spatial networks/Random Geometric Graphs provide a framework for modeling networks which show assortative mixing (i.e. nodes with similar characteristics more likely to share connections).

Motivation to consider spaces with $d \geq 2$!
Randomness in RGGs

1) Multiple samples drawn from the same RGG ensemble.

2) Computation of some network property, q.

3) Estimation of the distribution of q across the ensemble.

Figure: Individuals are more likely to interact with those with similar "social coordinates"
When is Knowledge of Node Locations Useful?

\(X = (X_1, X_2, \ldots, X_N) \)

Estimates of Mean Shortest Path Length, Mean Degree, Dynamical Properties etc..

\(\mathbb{P}(X_1, X_2, \ldots, X_N) \)
When is Knowledge of Node Locations Useful?

Case 1
Network Properties are similar for most ensemble members

Case 2
Network Properties vary widely across the ensemble.

Knowing the distribution of locations is sufficient to estimate network properties!

High Variance: knowing node locations allows us to narrow down the possible values of q!
The Coefficient of Variation can be used to measure the size of fluctuations in a property, q, relative to its mean. It is defined as the standard deviation divided by the mean:

$$CV(q) = \frac{\sigma(q)}{<q>}$$ \hspace{1cm} (1)

e.g if $CV = 0.1$ then we have fluctuations of the order 10% the size of the mean.

- If we want to estimate some q **precisely** for a large graph then fluctuations greater than 5 – 10% the size of the mean might be considered as **large fluctuations**.
The Algebraic Connectivity

Laplacian Matrix

\[L_{ij} = \sum_j A_{ij} - A_{ij} \]

Has Eigenvalues:

\[\mu_1 \leq \mu_2 \leq \ldots \leq \mu_N \]

Is zero!

Algebraic Connectivity

Q: What is the distribution of Algebraic Connectivity values across RGG ensembles?

Note: we consider \(\mu_2 \) for the largest connected component of the network.
Methodology

We consider three distinct RGG ensembles:

1. **Periodic Boundaries:** Uniform distribution in \([0, 1]^d\) with toroidal boundary conditions. We refer to these networks as PRGGs.

2. **Solid Boundaries:** Uniform distribution in \([0, 1]^d\) with solid boundaries. We refer to these as SRGGs.

3. **Gaussian Node Positions:** Node locations drawn from multivariate gaussian density
 \(f(x_1, ..., x_d) = \frac{1}{(2\pi)^{d/2}} e^{-\frac{(x_1^2 + ... + x_d^2)}{2}} \) on \(\mathbb{R}^d \). We will refer to networks of this class as GRGGs.
Methodology

(a) Uniform distribution in $[0, 1]^2$

(b) 2D Gaussian distribution in \mathbb{R}^2

Figure
We also extract the largest connected component of the network before computing μ_2 and other network properties.

We will use κ to refer to the mean degree of ensembles.
The value of $CV(\mu_2)$ can be relatively large (> 0.1) even for networks of size $N = 10^5$.

Figure: Plots showing estimates of $CV(\mu_2)$ as a function of the dimension for the three different RGG ensembles. Shown for the case of mean degree, $\kappa = 20.0$ for network ensembles of sizes $N = 10^4$ and 10^5. Also shown is the $CV(\mu_2)$ for the ER random graph model.
1 Motivation
- Random Geometric Graphs
- When is Knowing Node Locations Useful?
- The Algebraic Connectivity

2 Large Fluctuations in the Algebraic Connectivity

3 Why? - Correlations between the Algebraic Connectivity and Other Network Properties
Large fluctuations in the μ_2 of GRGGs are associated with the presence of weakly connected subgraphs.

(a) $\mu_2 = 0.01, F_P = 0.03$ (b) $\mu_2 = 0.07, F_P = 0.13$ (c) $\mu_2 = 0.16, F_P = 0.46$

Figure: Plots showing networks drawn from the ensemble of GRGGs with $N = 1000, d = 2$ and $\kappa = 20.0$. Nodes are colored according to partition corresponding to the eigenvector associated with μ_2. F_P is the fraction of nodes in the smaller partition.
Large Fluctuations in the μ_2 of SRGGs are associated with the presence a small number of weakly connected nodes.

Figure: Plots showing networks drawn from the ensemble of SRGGs with $N = 1000$, $d = 5$ and $\kappa = 20.0$. Nodes are colored according to partition corresponding to the eigenvector associated with μ_2. F_P is the fraction of nodes in the smaller partition.

(a) $\mu_2 = 0.23, F_P = 0.02$ (b) $\mu_2 = 0.35, F_P = 0.04$ (c) $\mu_2 = 1.7, F_P = 0.47$
Different factors influence μ_2 for RGGs in different dimensions (Solid BCs)

Figure: Scatter plot showing the joint distribution of μ_2 and average shortest path length, L, for RGGs with $N = 1000$. Shown for $\kappa = 20.0$ with solid boundaries. Points are colored according to the minimum degree of corresponding network ensemble member.
Different factors influence μ_2 for RGGs in different dimensions (Periodic BCs)

Figure: Scatter plot showing the joint distribution of μ_2 and average shortest path length, L, for RGGs with $N = 1000$. Shown for $\kappa = 20.0$ with periodic boundaries. Points are colored according to the minimum degree of corresponding network ensemble member.
The relationship between μ_2 and other network properties within a network ensemble is dependent on both the ensemble type and the spatial dimension.

Figure: Plot showing Spearman's rank correlation coefficient, ρ between μ_2 and other network properties as a function of dimension. Shown for $N = 1000$, $\kappa = 20.0$. Error bars show 95% confidence intervals on ρ estimated via bootstrapping.
Is Knowing Node Locations Useful? (Revisited)

1. In RGGs with **uniform node distributions** μ_2 is strongly influenced by **microscopic properties** ie. the minimum degree.

2. In RGGs with **Gaussian node distributions** μ_2 is influenced by the presence of **mesoscopic structures**.

In case 1) we might need exact knowledge of node locations in order to make predictions. In case 2) we may be able to make more gains without knowing all node locations precisely.

- Real situations may be modeled more realistically by **Soft Random Geometric Graphs** where the probability of two nodes being connected decays as a function of their separation distance.
- We expect our results to generalize to some choices of connection function.
Conclusions

- The presence of boundaries and heterogeneity in the distribution of nodes are important factors for driving fluctuations in the algebraic connectivity of RGGs.
- We have observed these large fluctuations in various large but finite sized RGG ensembles.
- The covariation of the algebraic connectivity and network properties is dependent both on the class of RGG ensemble and the dimensionality of the space.
- Knowledge of node locations in RGGs allows us to exactly specify the network structure and compute the algebraic connectivity.
- \(CV(\mu_2) \) is large, knowledge of node locations in RGGs gives us a predictive advantage over only having knowledge of the distribution of node locations.
Future Directions

- **Extension to Soft RGGs** - How much do network properties vary when we condition on knowledge of the node locations?

- **Analytic approaches** - can we use techniques from random matrix theory to derive distributional properties of μ_2 or other network properties?
Thanks for listening!!

Any Questions?
Mathematical Properties of RGGs

- Many properties of RGGs are hard to compute analytically.
- For example, there is no closed form expression for the probability of a given ensemble member.
- However, we can estimate some of the important properties such as the \textbf{mean degree}

\[\kappa = \int_{\mathbb{D}} \gamma(|x - y|) dx \, dy \] \hspace{1cm} (2)

The above equation works best as $N \to \infty$ with \textbf{periodic boundary conditions}.
Generation of RGGs with Specified Degree

For the case where the domain of interest is of unit volume the probability of some node j falling within the connection radius of a node i is given by the volume of the ball of radius R in d dimensions. Multiplying by this quantity by the number of remaining nodes in the network gives us an expression for the mean degree of the form:

$$\kappa = (N - 1) \frac{\pi^{\frac{d}{2}}}{\Gamma\left(\frac{d+2}{2}\right)} R^d. \quad (3)$$

Inverting this formula allows us to obtain an expression for the connection radius required to generate RGGs with mean degree κ in d dimensions for a network with N nodes:

$$R = \frac{1}{\sqrt{\pi}} \left(\frac{\kappa}{N - 1} \Gamma\left(\frac{d + 2}{2}\right) \right)^{\frac{1}{d}}. \quad (4)$$

This approach works well in practice for RGGs with periodic boundary conditions. However, for RGGs generated in $[0, 1]^d$ with solid boundaries the empirically observed mean degree of the ensemble, κ_{emp}, will in