Assessment of Tunnel-Induced Damage to Masonry Buildings at King’s Cross

R.A. Michael, Y.P. Dong, H.J. Burd
Department of Engineering Science, Parks Road, Oxford, OX1 3PJ

King’s Cross Development Project (2002)
- Construction of underground ticket halls and tunnels connecting to existing tube lines.
- New Piccadilly Line access tunnel constructed beneath Western Range Buildings.
- These buildings are grade 1 listed.

Tunnel-Induced Settlements
- Excavating a tunnel causes the soil above to settle.
- Without a building, the ground surface will form a Gauss curve transverse to the tunnel, where:

\[S_v = S_{\text{max}} e^{-\frac{y^2}{2z^2}} \]

- \(S_v \) is the vertical settlement,
- \(S_{\text{max}} \) the maximum settlement,
- \(y \) distance from centreline,
- \(K \) trough width parameter,
- \(z \) tunnel depth.
- These are known as ‘greenfield settlements’.
- Settlements create potentially damaging strains in buildings above.

Surface settlement trough, Attewell et al. 1986.

Finite Element Analysis
- Two models were used. (A) had plain walls, (B) included windows.
- A gap was able to form between the foundation and the soil, creating a more realistic model.
- The soil surface is at the base of the foundation.

Computed West Façade Settlements
- Settlemets were measured along the base of the façade.
- The stiffness of the building reduces the settlement.
- This means the damage to the building is less than a greenfield analysis would predict.

West Façade Structural Damage
- Strains can be read directly from the finite element results.
- These strain contour plots show that tensile strains of the order of 0.015% develop at the base of the façade for both models.
- These strains correlate well with those estimated from the computed settlements.

Comparison to Conventional Methods
- Conventional design methods ignore interactions between the building and the soil. This leads to an overestimate of the likely damage.
- In this project, conventional design methods predicted ‘moderate’ damage to the building. The finite element method predicted ‘negligible’ damage, which is consistent with field observations.
- Damage predictions influence legal agreements between building owners and infrastructure developers. Therefore, it is important that they are as accurate as possible.

Specification of Analysis
- This project looked at the effect of tunnelling on the Western Range building, particularly the west façade.
- A finite element model was created in Abaqus CAE. The results of which were processed using Matlab.
- Predicted greenfield settlements were imposed on the soil at the base of the footing, eliminating the need to model the tunnel itself. This analysis procedure is a new idea being developed in this project.

Problem configuration

Acknowledgements
The authors thank Mr M. Devriendt of Arup for providing relevant reports and site data. The project was funded by an EPSRC vacation bursary.

Potential Structural Damage
- Masonry is weak in tension and will crack at low strains.
- Small cracks may lead to redecoration, whereas large ones limit the serviceability of the building.
- The tensile strain provides a link between deformation estimates and possible severity of damage

<table>
<thead>
<tr>
<th>Damage Category</th>
<th>Degree of Severity</th>
<th>Limiting Tensile Strain (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Negligible</td>
<td>0-0.05</td>
</tr>
<tr>
<td>1</td>
<td>Very Slight</td>
<td>0.05-0.075</td>
</tr>
<tr>
<td>2</td>
<td>Slight</td>
<td>0.075-0.15</td>
</tr>
<tr>
<td>3</td>
<td>Moderate</td>
<td>0.15-0.3</td>
</tr>
<tr>
<td>4 to 5</td>
<td>Severe to Very Severe</td>
<td>>0.3</td>
</tr>
</tbody>
</table>

Relation between damage category and limiting strain, Boscardin et Cording 1989.

Acknowledgements