Numerical Simulation of Combustion Recession on ECN Diesel Spray A

XiaoHang Fang, Riyaz Isamil, Joe Camm, Martin Davy

Department of Engineering Science, University of Oxford

xiaohang.fang@eng.ox.ac.uk

September 20, 2017
Introduction
→ Combustion Recession
Conditional Source-term Estimation (CSE)
→ Core Algorithms
Non-reacting Spray - Setup
Results
Reacting Spray Results
Future Plan
Introduction

- Non-premixed combustion is widely used in current diesel engine technologies
 → Automotive engines, marine engines, power generation

- Efficiency and pollution considerations
 → Low-temperature combustion (LTC), exhaust-gas recirculation (EGR), early/late injection
Motivation

- Fuel-ambient mixtures upstream of the flame lift off length (LOL) may become too lean to initiate ignition after end of injection.

- These mixtures can be a major source of unburned hydrocarbon (UHC) for LTC.

- Recent studies indicate end-of-injection (EOI) processes may support ignition recession back to injector nozzle and consumption of UHC.
Combustion Recession (CR)

CR Schematics [4]

Spray A, 1000Bar, fast RD conditions [5]
Combustion Modelling

- CFD solves transport equations of Navier-Stokes, energy etc
- Symbolic form of Favre average species transport equation:
 \[\frac{Q_k}{\text{Rate of change}} + \frac{C_k}{\text{Convective}} = \frac{D_k}{\text{Diffusion}} + \frac{\bar{\omega}_k}{\text{Chemical source}} \]
- The focus of combustion modelling is to provide an adequate closure for the **mean chemical source term**, \(\bar{\omega}_k \)
- **Explicit** series expansion of the mean chemical source term is not viable:
 - → highly non-linear behaviour
 - → sensitivity to truncation
 - → additional term closures
Conditional Source-term Estimation (CSE)

For simulations where the scales are not fully resolved:

\[
\overline{\omega}_k \neq \dot{\omega}_k(T, Y_k, \rho) \\
\overline{\omega}_k|\eta \approx \dot{\omega}_k(T|\eta, Y_k|\eta, \rho|\eta)
\]

CSE is a combustion model for premixed and non-premixed flames:

\[
\int_0^1 \tilde{P}(\vec{x}, \eta^*) Y_k|\eta^* d\eta^* = \tilde{Y}_k(\vec{x})
\]

\[
\rightarrow A\vec{x} = \vec{b}
\]
Ensemble Selection

What is the purpose of an ensemble?

To provide the proper information for the inversion:

\[
\int_{0}^{1} \nabla P(\vec{x}, \eta^*) Y_k|\eta^*| d\eta^* = \tilde{Y}_k(\vec{x})
\]

1. A *localized* group of reactive cells:
 \[Y_k|\eta^* \text{ homogeneous within each ensemble} \]

2. *Enough* reactive cells for a proper inversion:
 \[\text{Overcome the problem of singularities} \]
Implementation:

- Pre-allocate CSE ensembles prior to runtime
- Overlapping cells between ensembles
- Each ensemble is assigned to one processor
 → Ideal for flames with clear symmetries!
- Successful implementation in Sandia methane co-flows (Sandia C, D, E, F flames)
LU-Decomposition

\[\int_0^1 \bar{P} (\vec{x}, \eta^*) Y_k | \eta^* d\eta^* = \bar{Y}_k (\vec{x}) \rightarrow A\vec{x} = \vec{b} \]

- \(A \): \(m \times n \)
- \(\vec{b} \): \(m \times 1 \)
- \(m \): number of CSE points in ensemble (\(\mathcal{O}(10,000) \))
- \(n \): number of PDF divisions (usually 50)

Tikhonov regularization:

\[
\begin{bmatrix}
A \\
\lambda I
\end{bmatrix} \vec{x} = \begin{bmatrix}
\vec{b} \\
\lambda \vec{\alpha}_0
\end{bmatrix} \rightarrow A^* \vec{x} = \vec{b}^* ((m + n) \times n)
\]

Reduce matrix:

\[
A^*^T A^* \vec{x} = A^*^T \vec{b}^* \rightarrow A^{**} \vec{x} = \vec{b}^{**} \ (n \times n)
\]

LU-Decomposition:

\[
LU \vec{x} = \vec{b}^{**}
\]
Ensemble pre-allocation

\[\tilde{\omega}_k \]

<table>
<thead>
<tr>
<th>CFD Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\tilde{Z}, \tilde{Z}''^2]</td>
</tr>
<tr>
<td>[\tilde{Y}_k]</td>
</tr>
</tbody>
</table>

PDF

\[\langle \omega_k | \eta \rangle \]

Chemistry

\[\langle Y_k | \eta \rangle \]

Tikhonov regularization, LU – Decomposition
Non-reacting Spray A Setup

Converge 2.4.11:

- Cylindrical domain H, D: 120 mm, 120 mm
- Maximum cell count: $2.95 \cdot 10^5$
- Standard ECN spray A conditions
- 2^{nd} order temporal/spatial schemes

<table>
<thead>
<tr>
<th>D_{nozzle} (μm)</th>
<th>T_{fuel} (K)</th>
<th>Δt (s)</th>
<th>M_{fuel} (mg)</th>
<th>P_{inj} (Mpa)</th>
<th>T_{gas} (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>363</td>
<td>1.5</td>
<td>3.5</td>
<td>150</td>
<td>900</td>
</tr>
</tbody>
</table>

\rightarrow Engine Combustion Network Spray A
Non-reacting Spray A Tests

- Grid dependency tests
- Collision model tests
 → NTC, O’Rourke, No collision
- Turbulence model tests
 → RNG $k - \epsilon$, Standard $k - \epsilon$, Realizable $k - \epsilon$
- Break up model tests
 → KHRT, Reitz-Diwakar
- Grid convergence tests
- Comparable results with both Sandia experiments and previous research

<table>
<thead>
<tr>
<th>Model Setup</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbulence Model</td>
<td>Standard $k - \epsilon$</td>
</tr>
<tr>
<td>Spray Models</td>
<td></td>
</tr>
<tr>
<td>Injection models</td>
<td>Blob</td>
</tr>
<tr>
<td>Break up</td>
<td>KH-RT</td>
</tr>
<tr>
<td>Atomization</td>
<td>KH-RT</td>
</tr>
<tr>
<td>Collision</td>
<td>NTC</td>
</tr>
<tr>
<td>Drag</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Evaporation</td>
<td>Frossling</td>
</tr>
<tr>
<td>Dispersion</td>
<td>Stochastic</td>
</tr>
<tr>
<td>Heat Transfer</td>
<td>Ranz-Marshall</td>
</tr>
<tr>
<td>Grid</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Structured with AMR</td>
</tr>
<tr>
<td>Dimensionality</td>
<td>3D</td>
</tr>
<tr>
<td>Smallest Grid Size</td>
<td>0.25mm</td>
</tr>
<tr>
<td>Time Step</td>
<td>Variable Time Step</td>
</tr>
</tbody>
</table>
Non-reacting Spray A Results

Non-reacting Spray A Standard Conditions Results

<table>
<thead>
<tr>
<th>KH size constant</th>
<th>KH time constant</th>
<th>Child velocity constant</th>
<th>$k - \epsilon$ constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_0 = 0.6$</td>
<td>$B_1 = 7$</td>
<td>$C_1 = 0.188$</td>
<td>$C_{\mu} = 1.58$</td>
</tr>
</tbody>
</table>
Reacting Spray A Tests

- Ranzi et al. CRECK 451-species detailed mechanism
- Reduced chemistry mechanism
 - Luo and Lu 106-species skeletal mechanism
 - Wang and Reitz 100-species skeletal mechanism
 - Cai and Pistch 57-species skeletal mechanism
- Combustion model tests
 - Well-Stirred Reactor (WSR/SAGE) model
 - Representative Interactive Flamelet (RIF) model
Reacting Spray Simulation Results

Objective: Implement CSE in a commercial CFD code with detailed chemistry and high spatial and temporal resolution to better represent combustion recession phenomenon.

- Evaluate the applicability of CSE for diesel fuel surrogates
- Determine the optimal analytical form to describe ζ PDF
- Incorporate second order conditional moment hypothesis to capture reignition and extinction
Thank you for your time!
References

[1] T. Poinsot and D. Veynante
Theoretical and Numerical Combustion (2005), 2nd Edition.

[6] Sandia National Laboratories
Appendix

Scatterplot Data Source: Barlow, Frank, Karpetis, and Chen (2005).