MVC and MPC

K. J. Astrom

Department of Automatic Control, Lund University
Congratulations to a Stellar Career!

- Points of tangency

- IFAC Teddington 1964
- IFAC Prague 1967 First Identification Symposium
- Generalized predictive control Automatica 1987
- A memorable semester as Douglas Holder Visiting Fellow Oxford in 1988
- Control is much more than algorithm design; diagnostics, fault detection and reconfiguration are also of prime significance.
Introduction

Minimum Variance Control

- Inspired by practice
- Åström 1966 (IBM J R&D 1967)
- Model structure MISO
- Explicit disturbance modeling
- Minimize variance
- Identification
- Self-tuning
- Harris index

Model Predictive Control

- Inspired by practice
- Richalet 1976 (Automatica 1978)
- Cutler DMC (ACC 1980)
- Model structure MIMO-FIR
- Reference trajectory
- Captures saturation
- Widely used in industry

What can we learn?

K. J. Astrom

MVC and MPC
Outline

- Introduction
- The IBM-Billerud Project
- Modeling
- Minimum Variance Control
- Adaptation
- Reflections
The Scene of 1960

- Servomechanism theory 1945
- IFAC 1956 (50 year jubilee in 2006)
- Widespread education and industrial use of control
- The First IFAC World Congress
 Moscow 1960
- Exciting new ideas
 - Dynamic Programming Bellman 1957
 - Maximum Principle Pontryagin 1961
 - Kalman Filtering ASME 1960
- Exciting new development
 - The space race (Sputnik 1957)
 - Computer Control Port Arthur 1959
- IBM and Nordic Laboratory 1961
The Role of Computing

- Vannevar Bush 1927: *Engineering can proceed no faster than the mathematical analysis on which it is based. Formal mathematics is frequently inadequate for numerous problems, a mechanical solution offers the most promise.*
- Herman Goldstine 1962: *When things change by two orders of magnitude it is revolution not evolution.*
- Gordon Moore 1965: *The number of transistors per square inch on integrated circuits has doubled approximately every 12 months.*
- Moore+Goldstine: *A revolution every 10 year!*
- Unfortunately software does keep up with hardware
- Roughly 10 years between MVC and MPC
The Billerud-IBM Project

Background
- IBM and Computer Control
- Billerud and Tryggve Bergek

Goals
- Billerud: Exploit computer control to improve quality and profit!
- IBM: Gain experience in computer control, recover prestige and find a suitable computer architecture!

Schedule
- Start April 1963
- Computer Installed December 1964
- System identification and on-line control March 1965
- Full operation September 1966
- 40 many-ears effort in about 3 years
Goals and Tasks

Goals
- What can be achieved by computer control?
- Find an architecture of a process control computer!

Philosophy
- Cram as much as possible into the system!

Tasks
- Production Planning
- Production Supervision
- Process Control
- Quality Control
- Reporting

Later 1969
- Millwide control
Computer Resources

- IBM 1720 (special version of 1620 decimal architecture)
- Core Memory 40k words (decimal digits)
- Disk 2 M decimal digits
- 80 Analog Inputs
- 22 Pulse Counts
- 100 Digital Inputs
- 45 Analog Outputs (Pulse width)
- 14 Digital Outputs
- Fastest sampling rate 3.6 s
- One hardware interrupt (special engineering)
- Home brew operating system
The Billerud Plant

- 660,000 ADt/year
- Three fiber lines
- Six paper machines

Containerboard
Sack
Kraft
Market pulp
Summary

Industrial

- A successful installation
- Computer architecture for process control
 IBM 1800, IBM 360

Methodology

- Method for identification of stochastic models
- Basic theory, consistency, efficiency, persistent excitation
- Minimum variance control

What we missed

- Project was well documented in IBM reports and a few papers but we should have written a book
Outline

- Introduction
- The IBM-Billerud Project
- Modeling
- Minimum Variance Control
- Adaptation
- Reflections
Process Modeling

- Process understanding and modifications (mixing tanks)
- Physical modeling
- Logging difficulties
- Drastic change in attitude when computer was installed
- Good support from management Kai Kinberg:
 “This is a show-case project! Don’t hesitate to do something new if you believe that you can pull it off and finish it on time.”
- The beginning of system identification
- Wasted a lot of time on historical data
- Big struggle to do real plant experiments
- Identifications requires a great range of skills
Basis Weight and Moisture Control

- Two important loops
- Triangular coupling MISO works
Modeling for Control

- Modeling by frequency response key for success of classical control
- Stochastic control theory is a natural formulation of industrial regulation problems
- State space models for process dynamics and disturbances
- Physical models may give dynamics
- Process data necessary to model disturbances
- Can we find something similar to frequency response for state space systems?
Typical Fluctuations

First measurement of fluctuations in basis weight 1963

Availability of sensor crucial!
A lot of effort to obtain this curve!
Stochastic Control Theory

Kalman filtering, quadratic control, separation theorem

Process model

\[dx = Ax \, dt + Bu \, dt + dv \]
\[dy = Cx \, dt + de \]

Controller

\[d\hat{x} = A\hat{x} + Bu + K(dy - C\hat{x} \, dt) \]
\[u = L(x_m - \hat{x}) + u_{ff} \]

A natural approach for regulation of industrial processes.

K. J. Astrom MVC and MPC
Model Structures

Process model

\[dx = Axdt + Budt + dv \]
\[dy = Cxdt + de \]

Much redundancy \(z = Tx + \) noise model. The innovation representation reduces redundancy of stochastics and filter gains appear explicitly in the model

\[dx = Axdt + Budt + Kd\epsilon \]
\[= (A − KC)xdt + Budt + Kdy \]
\[dy = Cxdt + d\epsilon \]

Canonical form for MISO system removes remaining redundancy, discretization gives (C filter dynamics)

\[A(q^{-1})y(t) = B(q^{-1})u(t) + C(q^{-1})e(t) \]
Modeling from Data (Identification)

The Likelihood function (Bayes rule)

\[p(\mathcal{Y}_t, \theta) = p(y(t)|\mathcal{Y}_{t-1}, \theta) = \cdots = -\frac{1}{2} \sum_{1}^{N} \frac{\epsilon^2(t)}{\sigma^2} - \frac{N}{2} \log 2\pi \sigma^2 \]

\[\theta = (a_1, \ldots, a_n, b_1, \ldots, b_n, c_1, \ldots, c_n, \epsilon(1), \ldots) \]

\[Ay(t) = Bu(t) + Ce(t) \quad C\epsilon(t) = Ay(t) - Bu(t) \]

\[\epsilon = \text{one step ahead prediction error} \]

Efficient computations

\[\frac{\partial J}{\partial a_k} = \sum_{1}^{N} \epsilon(t) \frac{\partial \epsilon(t)}{\partial a_k} \quad C \frac{\partial \epsilon(t)}{\partial a_k} = q_k y(t) \]

- Estimate has nice properties Åström and Bohlin 1965
- Good match identification and control. Prediction error is minimized in both cases! Cleaned up by Lennart Ljung ...
Practical Issues

- Sampling period
- To perturb or not to perturb
- Open or closed loop experiments
- Model validation
- 20 min for two-pass compilation of Fortran program!
- Control design
- Skills and experiences
Results
Outline

 Introduction
 The IBM-Billerud Project
 Modeling
 Minimum Variance Control
 Adaptation
 Reflections
Control

- Conventional PI(D) at lower level
- Simple digital control for non-critical loops
- Limited computational capacities
- Time delay dynamics stochastic fluctuations dominating
- Mild coupling basis weight and moisture control
- Minimum variance control and moving average control
- Robustness performance trade-offs
Minimum Variance (Moving Average Control)

Process model

\[Ay(t) = Bu(t) + Ce(t) \]

Factor \(B = B^+ B^- \), solve (minimum \(G \)-degree solution)

\[AF + B^- G = C \]

\[Cy = AFy + B^- Gy = F(Bu + Ce) + B^- Gy = CFe + B^-(B^+ Fu + Gy) \]

Control law and output are given by

\[B^+ Fu(t) = -Gy(t), \quad y(t) = Fe(t) \]

where \(\text{deg } F \geq \text{pole excess of } B/A \)

True minimum variance control \(V = E \frac{1}{T} \int_0^T y^2(t) dt \)
Properties of Minimum Variance Control

- The output is a moving average

 \[y = Fe, \quad \deg F \leq \deg A - \deg B^+. \]

 Easy to validate!

- Interpretation for \(B^- = 1 \) (all process zeros canceled), \(y \) is a moving average of degree \(n_{pz} = \deg A - \deg B \). It is equal to the error in predicting the output \(n_{pz} \) step ahead.

- Closed loop characteristic polynomial is

 \[B^+ C z^{\deg A - \deg B^+} = B^+ C z^{\deg A - \deg B^+ + \deg B^-}. \]

- The sampling period an important design variable!

- Sampled zeros depend on sampling period. For a stable system all zeros are stable for sufficiently long sampling periods.
Performance \((B^- = 1) \) and Sampling Period

Plot prediction error as a function of prediction horizon \(T_p \)

\[\sigma^2_{pe} \]

\(T_d \) is the time delay and \(T_s \) is the sampling period. Decreasing \(T_s \) reduces the variance but decreases the response time.
Strong similarity between all controller for systems with time delays, minimum variance, moving average and Smith predictor.

It is dangerous to be greedy!

Rule of thumb: no more than 1-4 samples per dead time motivated by simulation.
Robustness Analysis

Consider a system with time delay T_d design for a closed loop time constant T_{cl}. The main system functions are:

$$G_t(s) = \frac{e^{-sT_d}}{1 + sT_{cl}}$$

$$G_s(s) = 1 - G_{cl}(s) = 1 - \frac{e^{-sT_d}}{1 + sT_{cl}}$$

$$G_\ell(s) = \frac{e^{-sT_d}}{1 + sT_{cl} - e^{-sT_d}}$$

Sensitivity and complementary sensitivity functions are always less than 2! So things look good!

BUT Look at the delay margins!
Nyquist Plots for Smith Predictors $T_{cl} = 1$

- $T_d = 1$
- $T_d = 2$
- $T_d = 4$
- $T_d = 8$
Another Robustness Result

A simple digital controller for systems with monotone step response (design based on the model $y(k + 1) = bu(k)$)

$$u_k = k(y_{sp} - y_k) + u_{k-1}, \quad k < \frac{2}{g(\infty)}$$

Stable if $g(T_s) > \frac{g(\infty)}{2}$
Summary

- Regulation can be done effectively by minimum variance control
- Easy to validate
- Sampling period is the design variable!
- Robustness depends critically on the sampling period
- The Harris Index and related criteria
- OK to assess but why not adapt?
Outline

- Introduction
- The IBM-Billerud Project
- Modeling
- Minimum Variance Control
- Adaptation
- Reflections
Drawbacks with System Identification

- Experiment planning requires prior knowledge
- Process perturbations required
- Time consuming
- Requires competence
- Adaptation is an alternative
The Self-tuning Regulator

- Process model: \(Ay(t) = Bu(t - k) + B_{ff}u_{ff}(t) + Ce(t) \)
- Select sampling period and time delay \(k \), rules for stable systems
- Estimate parameters in the model

\[
y(t + k) = Sy(t) + Ru(t) + R_{ff}u_{ff}(t)
\]

- If estimate converge
 \[
 r_y(\tau) = 0, \tau = k, k + 1, \ldots k + \deg(S)

 r_{yu}(\tau) = 0, \tau = k, k + 1, \ldots k + \deg(R)

 \text{If degrees sufficiently large } r_y(\tau) = 0, \forall \tau \geq k

 - Convergence conditions

KJÅ+BW Automatica 9(1973),185-199
Convergence Analysis

Analysis of Recursive Stochastic Algorithms

Lennart Ljung, Member, IEEE

IEEE Trans AC-22 (1977) 551–575

Markov processes and differential equations

\[dx = f(x)dt + g(x)dw, \]
\[\frac{\partial p}{\partial t} = -\frac{\partial p}{\partial x} \left(\frac{\partial f \theta}{\partial x} \right) + \frac{1}{2} \frac{\partial^2}{\partial x^2} g^2 f = 0 \]

Lennarts idea

\[\theta_{t+1} = \theta_t + \gamma_t \varphi e, \]
\[\frac{d\theta}{d\tau} = f(\theta) = E\varphi e \]

Convergence of recursive algorithms and STR (Ay=Bu+Ce)

Jan Holst: ODE locally stable if \(\text{Re} C(z_k) > 0 \) for \(B(z_k) = 0 \)
Paper Machine Control

![Graphs showing moisture and control signal over time with annotations for start of self-tuning regulator and set point of refiner energy increased or decreased.](image-url)
Industrial Applications

- A number of applications in special areas
- Paper machine control
- Ship steering
- Rolling mills
- Semiconductor manufacturing
- Tuning of feedforward very successful
- The Novatune
- Process diagnostics Harris and similar indices
Tuning and Adaptation

Categories
- Automatic Tuning
- Gain Scheduling
- Adaptive feedback
- Adaptive feedfoward

Products
- Tuning tools
- PID controllers
- Tool boxes
- Special purpose systems built into instruments

Process dynamics

- Varying parameters
 - Use a controller with varying parameters
 - Unpredictable variations
 - Use an adaptive controller
- Constant parameters
 - Use a controller with constant parameters
 - Predictable variations
 - Use gain scheduling

Åström Hägglund Advanced PID Control, 2004
What happens when relay feedback is applied to a system with dynamics? Think about a thermostat?
The Excitation Signal

- Relay feedback automatically generates an excitation signal with good frequency content!
- The transient is also useful
Temperature Control of Distillation Column

K. J. Åström

MVC and MPC
Commercial Auto-Tuners

- Easy to use
 - One-button tuning
 - Semi-automatic generation of gain schedules
 - Adaptation of feedback and feedforward gains
- Robust
- Many versions
 - Stand alone
 - DCS systems
- Large numbers
- Excellent industrial experience

K. J. Astrom MVC and MPC
Properties of Relay Auto-tuning

- Safe for stable systems
- Close to industrial practice

 Compare manual Ziegler-Nichols tuning
 Easy to explain
- Little prior information. Relay amplitude
- One-button tuning
- Automatic generation of test signal

 Automatically injects much energy at ω_{180} without for knowing ω_{180} apriori
- Good for pre-tuning of adaptive algorithms
- Good industrial experience for more than 25 years. Basic patents are running out.
Outline

- Introduction
- The IBM-Billerud Project
- Modeling
- Minimum Variance Control
- Adaptation
- Reflections
Interaction with Industry

- Contact with real problems is very healthy for research in engineering
- Both MVC and MPC emerged in this way
- Applied industrial projects can inspire research, provided that they have enlightened management
- New problems may appear
- Challenges with publications; importance of good Editors
- Necessary to look deeper and to fill in the gaps, even if it takes a lot of effort and a lot of time - a long range view is necessary to get real insight
- Useful for a project to exchange people between academia and industry
- The Oxford model, the SupAero model, the Lund model
The Knowledge Gap

- Richalet Automatica 1963: MPC requires technical staff with training in:
 - modeling, identification, digital control,...
- The Novatune experience
 - Projects 73-74
 - Bengtsson Cold rolling 79
 - ASEA Innovation 81
 - 30 persons 50M
 - Transfer to ASEA Master
- Relay auto-tuning Hägglund kjå 1981
 - One button tuning
- Can relay auto-tuning be useful for MPC modeling?